

FERMILAB

Paths to the Future Frontier

Linear Collider? Muon collider? Very Large Hadron Collider? Fermilab physicists are working other with scientists worldwide to define the technologies that will keep the U.S. among world leaders in particle physics.

A linear collider
would create high-energy
collisions of electrons and
positrons. Synchrotron radiation
rules out a circular machine for these
particles. This 30-km design would use
high-gradient radiofrequency accelerating
structures to produce TeV-scale beams with
nanometer dimensions.

A concept for a possible highfield two-in-one magnet for
a Very Large Hadron Collider.
This design reaches a field
strength of 11T. Most highfield superconductors are brittle
when reacted and must be shaped
into coils prior to reaction, which makes
insulation and support difficult and cost!

insulation and support difficult and costly.

The flat coil configuration of this magnet makes fabrication very simple compared to the usual saddle shape of high-field coils. Furthermore, the curvature of the coil ends is very gentle, allowing the use of pre-reacted superconductor, and simple insulation and support. These features are expected to result in significant cost reduction.

The low-field magnet design concept for a Very Large Hadron Collider relies on an extremely simple warm-iron superferric magnet built around a superconducting transmission line. The design eliminates quadrupoles and difficulties with synchrotron radiation, reduces parts cost and greatly simplifies magnet installation. To match the low cost of the magnet, the design anticipates a minimallyimproved tunnel deep-bored in Illinois dolomite.